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Abstract
Particle conservation lattice-gas models with infinitely many absorbing states
are studied on a one-dimensional lattice. As one increases the particle density,
they exhibit a phase transition from an absorbing to an active phase. The models
are solved exactly by the use of the transfer matrix technique from which the
critical behavior was obtained. We have found that the exponent related to the
order parameter, the density of active sites, is 1 for all studied models except
one of them with exponent 2.

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

1. Introduction

Lattice models with infinitely many absorbing states with particle conservation [1–15] are
attractive due to their close connection [2, 16–19] to self-organized criticality (SOC) [20–22].
They are characterized by displaying a continuous phase transition from an absorbing to an
active state as one increases the density of particles, which represents a nondiffusive conserved
field. At low density the system is trapped into one of the many absorbing configurations.
Above a certain finite critical density of particles the system presents an active state in which
the density of active sites is nonzero. The critical behavior places these models into a distinct
universality class, namely that of absorbing phase transition with a nondiffusive conserved
field [1, 3, 9, 10, 12, 13].

The connection to SOC can be understood by adding or removing a particle from the
system according to the following procedure [14]: at each sufficiently large time interval, a
particle is added if the system has fallen into an absorbing state, a particle is removed if the
system is still in the active state. Using this procedure the system will approach by itself the
critical state, no matter what the initial number of particles is, a property that characterizes
the SOC phenomenon. An avalanche is simply interpreted as the movements of the active
particles. Its lifetime can be measured by the time it takes for the system to fall into an
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absorbing state. In the subcritical regime, the avalanche lifetime is finite becoming infinite at
the critical point and in the supercritical regime.

Among models that display infinitely many absorbing states with particle conservation
we find the fixed energy sandpile (FES) models [2, 4, 19], which are variants of the Manna
sandpile model [22], the conserved threshold transfer process (CTTP) [1, 2, 10] also known
as sandpile models with height restrictions [8], and the conserved lattice-gas (CLG) models
[1, 5–7, 14, 15]. The CLG models are exclusion models in which each site of the lattice can
be occupied at most by one particle. Depending on the configuration of its neighborhood, a
particle may be either active or inactive. Only active particles are allowed to move. If all
particles are inactive, the system is trapped into an absorbing state. The original CLG model
is the one in which a particle is active if it has at least one nearest neighbor site occupied. Our
interest here rests on a class of one-dimensional models that are generalizations of the CLG
models.

In one dimension, the original CLG model, which we call the simplest, can be solved
exactly [14, 23]. The purpose of this paper is to show that other similar one-dimensional lattice
gas models with infinitely many absorbing states, which are generalizations of the simplest
CLG model, can be solved exactly by a method to be explained shortly. In addition to the
simplest model three others are introduced and solved exactly by the same method. One
motivation for considering these other models is to show that the method we use here actually
solves a class of models. The models that can be solved by the present approach are those
whose stochastic dynamic rules drive the system to a subset of configurations from which it
cannot escape with the property that the configurations inside the subset are visited with equal
probability.

The exact solution is obtained in three steps. First, we show that in the active state all
configurations are equally probable, making up thus a microcanonical ensemble. Second, we
change to the equivalent grand canonical ensemble by the introduction of an auxiliary quantity,
the activity. Third, the exact solution is obtained by the use of a transfer matrix technique.
From the exact solution we find that all models studied here have the same exponent β = 1
except one of them with β = 2.

The fact that all configurations of the active state have the same probability of being
visited allows us to regard the system as being in equilibrium. However, according to common
wisdom [24] there is no phase transition in one dimension, a result that can be proved by
applying the Perron–Frobenius theorem to the transfer matrix. Since the models we study
here do actually have a phase transition this result seems paradoxical. To solve the paradox it
suffices to remember that in the present case all the entries of the transfer matrix are allowed to
vanish, and this will occur at a finite density of particles, so that the Perron–Frobenius can no
longer be invoked. We remark that in an ordinary one-dimensional equilibrium system, on the
other hand, the entries of the transfer matrix are strictly positive, except at zero temperature.

2. The simplest model

Let us consider a one-dimensional lattice with L sites and periodic boundary conditions. Each
site of the lattice can either be empty or occupied by just one particle and the stochastic rules
are such that the total number N of particles is conserved. Depending on the configuration of
its neighborhood a particle may be active or inactive. Active particles move around according
to stochastic rules to be specified shortly. Inactive particles do not move but may become
active due to the alteration of the configuration of its neighborhood. For a sufficiently small
number of particles the stationary state is an absorbing state which is a state with no active
particles. In this regime the system becomes trapped in one of the many absorbing states. For
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a sufficiently great number of particles however the stationary state is an active state, that is,
a state with a nonzero density of active particles.

Let us denote by ρ = N/L the density of particles and by ρc the critical density below
which the density of active sites ρa vanishes. Above the critical density, ρ > ρc, the rules
are such that the system representative point in configuration space evolves in time and
eventually enters a subspace �N from which it cannot escape. Once inside this subspace the
configurations in �N are visited with equal probability. Since the configurations are equally
probable they make up a microcanonical ensemble in �N from which we may determine the
stationary properties. However, for the purpose of analysis it is more convenient to change
to a grand canonical ensemble which in the thermodynamic limit gives the same properties
as the microcanonical ensemble. Using this equivalent grand canonical ensemble the one-
dimensional model is solved exactly by the use of the transfer matrix.

We start by examining the simplest soluble model which is defined as follows. A particle
is active if one of its two nearest neighbor sites is occupied and the other is empty. Otherwise,
it is inactive. At each time step a particle is chosen at random. If it is active it moves to the
nearest neighbor empty site. If it is inactive it does not move. Denoting by 0 and 1 an empty
and an occupied site, respectively, the possible transitions are represented as follows:

110 → 101, 011 → 101, (1)

and they occur with probability 1. From these two rules it follows immediately that the number
N11 of pairs of nearest neighbor occupied sites and the number N00 of pairs of nearest neighbor
empty sites never increase.

We consider first the case in which the number of particles is smaller than L/2. In this
case it is always possible to construct absorbing configuration by putting particles into the
sites of the lattice in such a way that no particle is close to another one so that N11 = 0 as
shown below:

10100010100101000100. (2)

A configuration of this type will be the end of the system trajectory in configuration space as
long as N < L/2. To see this it suffices to look at the possible transitions related to four sites
in a row which are

1100 → 1010, 0011 → 0101, (3)

1101 → 1011, 1011 → 1101. (4)

They have the same probability and are equivalent to rules in (1). The transitions in (4)
conserve both the number of 11 and 00 pairs whereas the transitions in (3) decrease the
number of 11 pairs as well as the number of 00 pairs. Taking into account that N00 �= 0,
because N < L/2, configurations of the type 1100 or 0011 will always be present as long
as N11 �= 0. But the transitions in (3) say that N11 should decrease. By this argument the
quantity N11 will decrease and eventually will reach its minimum value, namely N11 = 0.

When N > L/2 there is no absorbing configuration because in this case there is at
least one pair of nearest neighbor occupied sites, and therefore at least two active sites. The
stationary state is therefore an active state with N11 �= 0. The time evolution is such that
N11 decreases toward its stationary value which is nonzero. On the other hand N00 decreases
and eventually reaches the minimum value in the stationary active state which we assume to
be N00 = 0. This means to say that the stationary active state is devoid of 00 pairs of sites.
Therefore, the subspace �N of the active state is composed of configurations made up by
isolated vacancies as given by the example,

11010101101101101011. (5)
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In the subspace �N of active configurations with N particles, we need to consider only the
rules in (4) which are the only ones that involve isolated particles. Since the two transitions in
(4) are the reverse of each other and they have the same rate, the stochastic process defined on
�N obeys detailed balance. It follows then that the stationary probability is the same for all
configurations in �N provided the stochastic process is ergodic. This defines a microcanonical
ensemble with a fixed number of particles.

We have to show now that the system is ergodic within the subspace �N . This means
to prove that any configuration in �N can be reached by rules (4) from any other one. This
can be proved by showing that any configuration can reach and can be reached from a certain
standard configuration. We choose the standard configuration to be the one constructed by
placing zeros at the even sites of the one-dimensional lattice starting from site i = 2 until
i = 2(L − N) as shown below:

10101010101010111111. (6)

Using the transitions in (4) we can reach a given configuration, such as that in (5), by shifting in
sequence each ‘zero’ of the standard configuration to its final place starting from the rightmost
‘zero’. Since the rules in (4) are the reverse of each other, the trajectory in configuration space
can be reversed to reach the standard configuration from the given configuration.

3. A grand canonical ensemble

The properties of the active state of the simplest model defined in the previous section can be
determined by the use of a grand canonical ensemble in which the number of particles will be
a fluctuating variable. We begin by introducing the grand canonical partition function

Z =
∑

n

Wnz
n, (7)

where z is the activity and Wn denotes the number of configurations in �n. Note that n � L/2
so that we set Wn = 0 when n < L/2.

Let us denote by � the space of configurations of type (5) independently of n. In other
words, � is the union of all subspaces �n. The probability of a configuration C belonging to
� in the grand canonical ensemble is

P(C) = 1

Z
zn, (8)

where n is the number of particles in configuration C. The partition function Z can be calculated
by

Z =
∑
C

zn, (9)

where the summation is over all configurations C in �.
The partition function is determined by the use of a transfer matrix T connecting two

consecutive sites of the one-dimensional lattice. Using periodic boundary conditions the
partition function is determined by

Z = Tr T L, (10)

where T is a 2 × 2 matrix. The transfer matrix is set up by taking into account that double
vacancy is forbidden, from which it follows that T (00) = 0, and by associating a weight z1/2

with each occupied site, from which it follows that T (11) = z, T (10) = T (01) = z1/2.
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In the thermodynamic limit
1

L
ln Z = ln λ, (11)

where λ is the largest eigenvalue of T, solution of

λ2 − zλ − z = 0, (12)

and given by

λ = z +
√

z2 + 4z

2
. (13)

The average number of particles 〈n〉 can be calculated by means of (8) and (9). From them it
follows that the density of particles ρ = 〈n〉/L can be determined from

ρ = z

λ

∂λ

∂z
. (14)

This formula gives the following relation between the density of particles ρ and the activity z:

ρ = 1

2
+

1

2

√
z

z + 4
= λ + 1

λ + 2
. (15)

The critical density ρc = 1/2 is obtained when z → 0.
To determine the density ρ11 of the pairs 11 we use the relations ρ11 + ρ10 = ρ1 = ρ and

ρ10 + ρ00 = ρ0 = 1 − ρ. Taking into account that ρ00 = 0 it follows that ρ11 = 2ρ1 − 1, that
is, ρ11 = 2ρ − 1.

The transfer matrix approach allows us to determine other quantities such as the density
ρa of active states given by ρa = ρ110 + ρ011. This quantity can be determined by using
a pseudo-matrix (see the appendix) associated with three consecutive sites and defined by
T (000) = T (001) = T (100) = 0, T (010) = z1/3, T (101) = z2/3T (011) = T (110) = z2/3h,
where h is a parameter, and T (111) = z. The density of active sites can then be determined
by

ρa = h

λ

∂λ

∂h
, (16)

calculated at h = 1, where λ is the largest eigenvalue of T. Now, an eigenvalue of T is related
to h and z by

(λ2 − z)(λ − z) = z2h2, (17)

from which we may obtain the derivative of λ with respect to h. After some straightforward
algebraic steps and taking into account the relation (12) we arrive at the following relation
between ρa and λ:

ρa = 2λ

(λ + 1)(λ + 2)
, (18)

from which follows the relation between the density of active particles and the density of
particles

ρa = 2
ρ
(2ρ − 1)(1 − ρ), (19)

shown in figure 1. Therefore the order parameter ρa vanishes at the critical density ρc = 1/2
with an exponent β = 1.

The correlation length ξ can also be determined from the ratio between the two eigenvalues
of T. It is given by ξ−1 = | ln |λ′|/λ| where λ′ is the other eigenvalue. As one approaches the
critical point, z → 0, we get ξ = z−1/2 so that

ξ = 1
4

(
ρ − 1

2

)−1
, (20)

given the exponent ν = 1.
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Figure 1. Density ρa of active particles as a function of the density ρ of particles for the model 1
as given by equation (19) (continuous line) and by simulation (square symbols).

4. Second model

The possible transitions for the second model are as follows:

1100 → 1001, 0011 → 1001, (21)

101 → 011, 101 → 110. (22)

The two transitions in (21) occur with probability 1 each and describe a jump of a particle
to the next-nearest-neighbor site. Each transition in (22) occurs with a probability 1/2. An
absorbing configuration is any configuration without isolated vacancies and such that the
particles are isolated as shown below:

10010001001000010000. (23)

Since any cluster of ‘zeros’ has two or more ‘zeros’, such an absorbing configuration can be
constructed provided N < L/3.

When N > L/3, either the system displays at least one isolated, vacant site, which
produces by (22) an 11 pair, or the system already displays an 11 pair so that the stationary
state should be active. In this regime, after a transient, the representative point in configuration
space will find itself inside the subspace �N of configurations with N particles of the type

10011001001110010011, (24)

in which the ‘zeros’ occur only in clusters of two sites. Within the space �N the transitions in
(22) are no longer effective and the transitions in (21) reduce to the following ones

11001 → 10011, 10011 → 11001, (25)

which represent diffusion of a 00 pair and are the reverse of each other. The system becomes
trapped inside the subspace �N of the active configurations. The ergodicity inside the subspace
�N can be shown as before by defining a standard configuration such that the 00 pairs of sites
are all to the left as shown below,

10010010010010011111. (26)
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Figure 2. Density ρa of active particles as a function of the density ρ of particles for the model 2
as given by equation (30) (continuous line) and by simulation (square symbols).

Again by diffusion of the 00 pairs, provided by rules in (25), any configuration in �N can
reach or can be reached from the standard configuration (26).

We use again the grand canonical ensemble and the transfer matrix approach to determine
the properties of the active state. The grand canonical partition function is given by
equation (10) and now the pseudo-matrix T involves three consecutive sites. With each
occupied site we associate a weight z1/3. The elements of T are then: T (000) = 0, since a
cluster of three ‘zeros’ in a row is forbidden, T (001) = T (010) = T (100) = z1/3, T (011) =
T (110) = z2/3, T (101) = 0 since an isolated vacancy is forbidden, and T (111) = z. The
eigenvalues of T obey the following relation:

z = λ3

λ2 + 1
, (27)

which used in (14) gives

ρ = λ2 + 1

λ2 + 3
. (28)

The critical density is ρc = 1/3, obtained by taking the limit z → 0 or λ → 0.
The density of active sites ρa is given by ρa = ρ0011 + ρ1100. Since there are no isolated

vacancies in the active state, ρ1100 = ρ110 and ρ0011 = ρ011, so that ρa = ρ110 + ρ011. This
last quantity can be determined by modifying the pseudo-matrix T as follows. All elements of
T are the same except T (110) and T (011) which now read T (110) = T (011) = z2/3h. The
density ρ110 is then determined by equation (16), calculated at h = 1. After straightforward
algebraic steps we arrive at the result

ρ110 = λ2

(λ2 + 3)(λ2 + 1)
. (29)

Using (28) we finally get

ρa = 2ρ110 = (3ρ − 1)(1 − ρ)

2ρ
, (30)

plotted in figure 2. Again the order parameter ρa vanishes with an exponent β = 1.
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5. Third model

In this model the stochastic rules are as follows:

1101 → 1011, 1011 → 1101, (31)

1100 → 1001, 0011 → 1001, (32)

1100 → 1010, 0011 → 0101, (33)

10101 → 10011, 10101 → 11001, (34)

where the transitions in (32), (33) and (34) occur with probability 1/2 and the two in (31) with
probability 1.

When N < 2L/5 an absorbing configuration is the one in which the occupied sites are
isolated and the clusters of vacancies can be of any size. However, an isolated particle must
have at least one next-nearest-neighbor site vacant, so that the sequence 10101 is not allowed,
as shown in the example below:

100101000100101001000100. (35)

The absorbing configuration with the largest density occurs when N = 2L/5.
When N > L/3 the system may enter a stationary active state characterized by

configurations of the type

100110101110010110100111, (36)

in which the vacant sites are either isolated or appear in pairs. In the active state the transitions
in (32), (33) and (34) reduce to the following transitions:

11001 → 10011, 10011 → 11001, (37)

11001 → 10101, 10011 → 10101, (38)

10101 → 10011, 10101 → 11001. (39)

Note that for each given transition the inverse also occurs with the same probability. In the
present model the pseudo-matrix T involves three consecutive sites. The elements of T are
T (000) = 0, since a cluster of three ‘zeros’ in a row is forbidden, T (001) = T (010) =
T (100) = z1/3, T (011) = T (101) = T (110) = z2/3 and T (111) = z. The eigenvalues of T
obey the following relation:

z = λ3

λ2 + λ + 1
. (40)

Using equation (14) we get the density as a function of λ:

ρ = λ2 + λ + 1

λ2 + 2λ + 3
. (41)

When z → 0 or λ → 0 we obtain the critical density, namely ρc = 1/3.
We remark that for this model the system may also have an absorbing configuration of

the type (35) in the interval 1/3 < ρ < 2/5. However, in this interval it is possible to show
that the absorbing state is unstable.

The density of active sites ρa is obtained by ρa = 2ρ1100 + 2ρ1101 + ρ10101 or ρa =
2ρ110 + ρ10101. The quantity ρ110 can be determined by modifying the element T (110) which
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Figure 3. Density ρa of active particles as a function of the density ρ of particles for the model 3
as given by equation (44) (continuous line) and by simulation (square symbols).

now reads T (110) = z2/3h. The density ρ110 is determined by the relation ρ110 = h∂ ln λ/∂h

calculated at h = 1. After straightforward algebraic steps we arrive at the result

ρ110 = λ2(λ + 1)

(λ2 + 2λ + 3)(λ2 + λ + 1)
. (42)

The calculation of ρ10101 needs the introduction of a pseudo-matrix involving five sites in a
row. By using such a matrix we may find, after straightforward but cumbersome algebraic
steps, the result

ρ10101 = λ2

(λ2 + 2λ + 3)(λ2 + λ + 1)
, (43)

so that

ρa = λ2(2λ + 3)

(λ2 + 2λ + 3)(λ2 + λ + 1)
. (44)

This equation together with equation (41) gives the density of active sites ρa as an implicit
function of the density of particles ρ, as shown in figure 3.

Around the critical point λ = 0, which implies ρ = ρc = 1/3, the density of particles
and the density of active sites behave as (ρ − ρc) = λ/9 and ρa = λ2/3 so that the density of
active sites vanishes as

ρa = 27(ρ − ρc)
2. (45)

Therefore, for this model the exponent β = 2, distinct from that of the previous models.

6. Fourth model

The transitions of the fourth model are

1101 → 1011, 1011 → 1101, (46)

11001 → 10011, 10011 → 11001, (47)

9
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11000 → 10100, 00011 → 00101, (48)

11000 → 10010, 00011 → 01001, (49)

10100 → 10010, 00101 → 01001. (50)

Those in (48) and (49) occur with probability 1/2 and the others with probability 1. An
example of an absorbing configuration is

10010001001000010000, (51)

in which the particles are isolated and there are no isolated vacancies. Such an absorbing
configuration can always be constructed as long as N < L/3.

When N > L/2 the system must display at least one 11 pair so that by rules in (46), (47),
(48) and (49) the system finds itself in an active state. In the interval L/3 < N < L/2, either
(a) there exists at least one 11 pair and one may apply one of the rules in (46), (47), (48) and
(49) or (b) there is at least one isolated vacancy and we may use rules in (50). Therefore,
when N > L/3 the system is in an active state with the exception of the case N = L/2 (if L
is even).

Let us consider next a configuration of the type

110011010111001110011010, (52)

in which the clusters of ‘zeros’ are either isolated or appear in pairs. The application of rules
(46), (47) and (50) will generate configurations of the same type. For configurations of this
type the rules in (48) and (49) do not apply and the other transitions reduce to

1101 → 1011, 1011 → 1101, (53)

11001 → 10011, 10011 → 11001, (54)

101001 → 100101, 100101 → 101001. (55)

Note that the transitions appearing in each equation are reverse of each other.
The transition rules in (53), (54) and (55) imply a conservation of the number N101 of

isolated vacancies and of the number N1001 of pair of vacancies. However, these two quantities
are not independent because the number N0 of vacancies is also a conserved quantity and
N101 + 2N1001 = N0. Let us denote by ��n the subspace of configurations of the type (52)
with � pair of vacancies and n particles. Depending on the initial condition the system will
end up in one of the possible subspaces ��n. Since the transitions within the subspace ��n

are reverse of each other we may assume that the stationary probability is the same for any
configurations in subspace ��n provided the system is ergodic within this subspace. But this
can be proven by using a reasoning similar to that employed before.

We now change to the grand canonical ensemble defined over the subspace � defined as
the union of all subspaces ��n. In the present case we must use another type of activity besides
that related to the number of particles. Accordingly, we introduce the activity y related to the
number of pairs of vacancies. The grand partition function then reads

Z =
∑
�,n

W�ny
�zn, (56)

where W�n denotes the number of configurations in ��n.
Again we may use the transfer matrix approach to calculate the partition function.

The pseudo-matrix T for the present model involves three consecutive sites and their
elements T are T (000) = 0, since a cluster of three consecutive ‘zeros’ is forbidden,

10
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Figure 4. Phase diagram for model 4 in the space ρ00 versus ρ. In the stationary state the system
is found either in the active (Ac) state or in the absorbing (Ab) state.

T (001) = T (100) = y1/2z1/3, T (010) = z1/3, T (011) = T (110) = T (101) = z2/3 and
T (111) = z. The eigenvalue of T is the solution of the equation

λ3 = z(λ2 + λ + y). (57)

The density of sites is determined by equation (14) which gives

ρ = λ2 + λ + y

λ2 + 2λ + 3y
, (58)

whereas the density ρ00 of pairs of vacancies is determined by ρ00 = (y/λ)∂λ/∂y which gives

ρ00 = y

λ2 + 2λ + 3y
. (59)

From these two equations we find λ and y as functions of ρ and ρ00:

λ = 2ρ + ρ00 − 1

1 − ρ − 2ρ00
, (60)

y = ρ00(2ρ + ρ00 − 1)

(1 − ρ − 2ρ00)2
. (61)

Substituting these two results into (57), we get

z = (2ρ + ρ00 − 1)2

ρ(1 − ρ − 2ρ00)
. (62)

In the active state the density of active sites is determined by ρa = 2ρ1100 + 2ρ1101 +
2ρ10100 = 2ρ110 + 2ρ10100. The quantity ρ110 is determined by modifying the element T (110)

as done in the previous section. The result is

ρ110 = (1 − ρ − ρ00)(2ρ + ρ00 − 1)

ρ
. (63)

11
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Figure 5. Density ρa = 2ρ110 +2ρ10100 of active particles as a function of the density ρ of particles
for the model 4 as given by equations (63) and (64) (continuous line) and by simulation (symbols)
for several values of ρ00.

Again the calculation of ρ10101 needs the introduction of a pseudo-matrix involving five sites
in a row. After straightforward but cumbersome algebraic steps we may find the result

ρ10100 = ρ00(1 − ρ − 2ρ00)

ρ
, (64)

from which we get the desired expression ρa for the density of active sites in terms of the
density of particles and density of pairs of vacancies. Both expressions (63) and (64) are valid
in the active region of the phase diagram defined by 1 − 2ρ � ρ00 � (1 − ρ)/2 and shown
in figure 4. The density of active sites as a function of ρ for several values of ρ00 is shown in
figure 5.

7. Conclusion

We have solved exactly four one-dimensional particle conservation lattice models with
infinitely many absorbing states. This allowed us to determine the critical behavior of each
model from which we obtained the exponent β = 1 for all models with the exception of one
of them for which β = 2. The exact solution was obtained by the use of a transfer matrix
technique and the transition occurred when the largest eigenvalue of the matrix vanished. The
crucial point that allowed us to find the exact solution was the fact that inside the active subspace
all configurations were equally probable making up a microcanonical ensemble. Although this
result alone does not guarantee the finding of an exact solution in any dimension, it actually
does in one dimension as we have shown here.
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Appendix

Suppose that a partition function

Z =
∑

η

F (η1, η2, η3, . . . , ηL), (A.1)

where the summation over the variables (η1, η2, . . . , ηL) = η, is such that F(η) can be written
as the product

F(η) =
L∏

i=1

T (ηi, ηi+1, . . . , ηi+k), (A.2)

where periodic boundary conditions have been used. The variables ηi take p values. In
the models we have considered here p = 2. When k = 1 the quantities T (η1, η2) may be
interpreted as the elements of a p × p square matrix T. When k > 1 we can no longer assert
this and for this reason we call T a pseudo-matrix and T (η1, η2, . . . , ηk, ηk+1) its elements.
However, it is always possible to set up a genuine pk × pk square matrix T̂ , associated with
T, by defining its elements as

T̂ (η1, η2, . . . , ηk; η′
1, η

′
2, . . . , η

′
k)

= T (η1, η2, . . . , ηk, ηk+1) δ(η′
1, η2) . . . δ(η′

k−1, ηk)δ(η
′
k, ηk+1), (A.3)

where δ(η1, η2) is the Kronecker delta. From this definition this relation follows

T (η1, η2, . . . , ηk, ηk+1) =
∑
η′

1

. . .
∑
η′

k

T̂ (η1, η2, . . . , ηk; η′
1, η

′
2, . . . , η

′
k). (A.4)

Using these results in equation (A.2) it is straightforward to show that

Z = Tr T̂ L. (A.5)

Since

Tr T̂ L =
∑

r

λL
r , (A.6)

the calculation of the partition function is reduced to finding the eigenvalues λr of T̂ . In the
text, when we say ‘the eigenvalue of T’ we mean ‘the eigenvalue of the associated matrix T̂ ’.
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[11] Lübeck S and Heger P C 2003 Phys. Rev. E 68 056102
[12] van Wijland F 2003 Braz. J. Phys. 33 551
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